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Great efforts have been taken to 

programmatically synthesize current agronomic 

knowledge into computer simulation models.  

However, the applicability of these models has 

been limited, because many input parameters 

must be specified and model calibration against 

field measurements is often necessary to insure 

adequate model performance.  Field data 

collection is typically a very expensive, labor 

intensive and time-consuming endeavor.

Remote sensing has been proposed as a 

relatively quick, easy, and inexpensive source of 

information that relates well with key model 

state variables, such as green leaf area index 

(GLAI).  Several data assimilation strategies 

have been developed for merging remote 

sensing with model simulations. The ‘updating’ 

strategy simply overwrites the model state 

variable with the measured value on the 

measurement date.  The ‘forcing’ strategy 

overwrites the model state variables with the 

measurement on a daily time-step, relying on 

linear interpolation to derive the values between 

measurement dates.

Our objectives were to 1) develop these 

techniques for assimilating remote sensing 

estimates of GLAI into the CERES-Wheat crop 

model and to 2) evaluate the ability of the 

assimilation strategy to improve simulations of 

crop yield and evapotranspiration using data 

from a field study in central Arizona.

Irrigation scheduling experiments over 32 plots 

were conducted in wheat during the winter of 

2003-2004 and 2004-2005 at Maricopa, Ariz. 

(Hunsaker et al., 2007).  Main treatments 

included two irrigation scheduling methods, 

one using standard FAO-56 procedures and the 

other using real-time remote sensing-based 

estimates of crop coefficients.  To produce 

variability in crop growth characteristics, sub-

treatments included two nitrogen application 

rates and three population densities.  These 

experiments provided much data for the current 

investigation, including:

Choudhury’s method, as implemented by 

French et al. (2007), was used to compute 

GLAI from NDVI.  Fractional vegetation cover 

is computed from NDVI using:

where NDVI measurements are rescaled 

according to the bare soil index, NDVImax, and 

the full vegetation cover index, NDVImin. The 

parameter,  , is a function of canopy leaf angle 

distribution.  The GLAI is then computed from 

f according to:

where ! is a second function of leaf angle 

distribution.  Values for  and ! were specified 

as 1.85 and 0.716, based on results of French. 
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•Soil moisture – twice weekly

•Neutron probe at 20 cm increments

•Water balance estimate of ET

•Agronomic

•Weekly crop development

•Bi-weekly biomass samples

•Crop yield

•Meteorological – continuous monitoring

•Canopy reflectance – twice weekly

•Exotech four-band radiometer

•Used to compute NDVI

Assimilation of remotely sensed GLAI 

estimates into the CERES-Wheat model was 

expected to influence both the water balance 

simulation and the crop growth simulation, 

since the GLAI state variable is involved in the 

computation of both evapotranspiration and the 

fraction of photosynthetically active radiation 

intercepted by the plant canopy.  CERES-

Wheat was reprogrammed to accept GLAI 

inputs and to adjust the plant leaf area (PLA) 

and the GLAI state variables based on the 

remotely sensed GLAI observations.  Data 

assimilation by ‘updating’ and ‘forcing’ was 

then tested using different soil texture inputs to 

demonstrate the ability of the assimilation 

strategy to improve model simulations of crop 

yield and evapotranspiration when soil 

properties were uncertain.   
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Figure 1.  Root mean squared error between measured and 

simulated yield for the a) 2003-2004 and b) 2004-2005

growing seasons under no data assimilation and data 

assimilation by ‘updating’ and ‘forcing’ using different soil 

inputs.

Figure 2.  Root mean squared error between measured and 

simulated evapotranspiration for the a) 2003-2004 and b) 

2004-2005 growing seasons under no data assimilation and 

data assimilation by ‘updating’ and ‘forcing’ using different 

soil inputs.

Results demonstrated that the ‘updating’ and 

‘forcing’ data assimilation strategies could 

improve CERES-Wheat simulations of crop 

yield and ET as long as the soil texture inputs 

were similar to actual soil texture at the site 

(OBS), which was best classified as a sandy 

loam.  If soil parameters for loam (L), loamy 

sand (LS), or sandy loam (SL) were used, crop 

yield and ET simulations were consistently 

improved using the data assimilation.  This 

result was less consistent when using sandy clay 

loam (SCL) and silty loam (SiL) soil inputs, 

where the yield and ET simulations were 

sometimes improved, but not always.  Use of 

soil input parameters for any other soil type 

(data not shown), which were more dissimilar to 

the actual soil texture, did not result in an 

improvement.  Proper specification of soil 

parameters is required before data assimilation 

techniques can further improve the model.

As long as the CERES-Wheat soil input 

parameters are reasonably specified, 

assimilation of remotely sensed estimates of 

GLAI into the model can improve simulations 

of yield and evapotranspiration.
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